113 Class Problems: Ideals and Homormorphisms

1. Let $\mathbb{C}[x, y]$ be the ring of polynomials in two variables with complex coefficients. For example $2 x^{2} y-4 x+9 y+3 \in \mathbb{C}[x, y]$. The addition and multiplication are given by the usual addition and multiplication of polynomials. Prove that the following map is a homomorphism:

$$
\begin{aligned}
\phi: \mathbb{C}[x, y] & \rightarrow \mathbb{C} \\
f(x, y) & \mapsto f(0,0)
\end{aligned}
$$

Give an explicit description of the kernel.
Solutions:

$$
f(x, y)=a_{0}+f_{1}(x, y) x+f_{2}(x, y) y
$$

Let $f(x, y), g(x, y) \in \mathbb{C}[x, y] \Rightarrow g(x, y)=b_{0}+g_{1}(x, y) x+g_{2}(x, y) y$

$$
\begin{aligned}
& \left.{ }^{4} \phi(f(x, y)+g(x, y))=\phi\left(a_{0}+b_{0}+\left(f, a_{1}, y\right)+g_{1}(x, y)\right) x+\left(f_{z}(x, y)+g(x, g)\right) y\right) \\
& \frac{2}{\phi}(f(x, y) g(x))=\phi\left(a_{0}+b_{0}=\phi(f(x, y))+\phi(g(x, y))\right. \\
& 3 / \varnothing(1)=1 \\
& \operatorname{Ker} \phi=\{f(x, y) \mid f(0,0)=0\}=\{f(x, y) \mid f \text { has zero constant term }\} \\
& \left\{g(x, y) x+h^{\prime \prime}(x, y) y(g, h \in \subset[x, y]\}\right.
\end{aligned}
$$

2. Let R be a ring and $I \subset R$ an ideal. We say I is a proper ideal if $I \neq R$. Prove the following:
I is a proper ideal of $R \Longleftrightarrow I \cap R^{*}=\emptyset$.
Solutions:
Let's prove $I=R \Leftrightarrow I \cap R^{*} \neq \varphi$

$$
\Leftrightarrow
$$

$$
\begin{aligned}
& \Rightarrow I \\
& I
\end{aligned}=R \Rightarrow I_{R} \in I \Rightarrow I \cap R^{*} \neq \phi
$$

\Leftrightarrow Let $a \in I \cap R^{*} \Rightarrow I_{R}=a^{-1} a \in I$
Let $r \in R \Rightarrow r=r \cdot I_{R} \in I \Rightarrow I=R$
3. Let R be a commutative ring and $x \in R$. Define the subset

$$
(x):=\{r x \mid r \in R\} \subset R
$$

(a) Prove that (x) is an ideal. Any ideal of this form is called principal.
(b) Prove that (x) is proper if and only if $x \notin R^{*}$.
(c) (Hard) Give an example of a commutative ring R and an ideal I, such that I is not principal, i.e not of the form (x) for some $x \in R$. Carefully justify your answer.
Solutions:
a)

$$
\begin{array}{ll}
y o_{R} \cdot x=o_{R} \Rightarrow o_{R} \in I & \\
2 r x+s x=(r+s) x \in I & \forall r, s \in R \\
3-(r x)=(-r) x \in I & \forall r \in R \\
4 s(r x)=(s v) x \in I & \forall s, v \in R
\end{array}
$$

b) C (ain $(x)=R \Leftrightarrow x \in R^{*}$
$(\Rightarrow)(x)=R \Rightarrow 3 r \in R$ such that $r x=I_{R} \Rightarrow x \in R^{*}$ $(\stackrel{(}{\hookrightarrow}) x \in R^{*} \Rightarrow 3 r \in R$ such that $v x=l_{R} \Rightarrow I_{R} \in(x) \Rightarrow(x)=R$ c) Ken from Q1. $(f(x, y))=\left.K_{\text {end }} \Rightarrow f(x, y)\right|_{x}$ and $f(x, y)$ is
4. Let I, J be ideals in a commutative ring $R . \Rightarrow f(x, y)$ constant
(a) Prove that $I \cap J$ is an ideal.
(b) Let

$$
\begin{aligned}
& \Rightarrow f(x, y) \text { constant } \\
& \Rightarrow \text { kens }=\mathbb{C}[x, y]
\end{aligned}
$$ Contraderetion.

$$
I+J:=\{x+y \mid x \in I, y \in J\}
$$

Prove that $I+J$ is an ideal.
Solutions:
a) $\cdot o_{R} \in I, J \Rightarrow o_{R} \in \operatorname{InJ}$
$\cdot x, y \in I \cap J \Rightarrow x+y e I, x+y \in J \Rightarrow x+y \in I \cap J$

- $x \in \operatorname{InJ} \Rightarrow-x \in I,-y \in J \Rightarrow-x \in \operatorname{In} J$
- $x \in I n J, r \in R \Rightarrow r x \in I, r x \in J \Rightarrow r x \in I n J$
b). $O_{R} \in I, O_{R} \in J \Rightarrow O_{R}=O_{R}+O_{R} \in I+J$

$$
\begin{aligned}
& \left(x_{1}+y_{1}\right)+\left(x_{2}+y_{2}\right)=\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right) \\
& -\left(x_{1}+y_{1}\right)=\left(-x_{1}\right)+\left(-y_{1}\right) \quad \text { Page } \\
& I I=\left(x_{1}+y_{1}\right)=\left(r x_{1}\right)+\left(r y_{1}\right)
\end{aligned}
$$

$$
\forall x_{1}, x_{2} \in \mathcal{L}
$$

$$
y_{1} \cdot y_{2} \in 5
$$

Fez

